Considerations in Circuit Miniaturization

The AmSECT 40th International Conference

**Pediatric Track** 

Edward Darling, C.C.P. Upstate Medical University Syracuse, NY

# Objectives

- Investigate the long held dogma is "smaller is better".
   Motivations for miniaturization
- Discuss techniques to miniaturize the neonatal and pediatric CPB circuits.
- Explore "Second Generation" concepts of pediatric pump oxygenators
  - Safety considerations

# The Problem -A matter of proportions

|              | Pt. Blood<br>Volume | Circuit Prime<br>Volume | %<br>diff |
|--------------|---------------------|-------------------------|-----------|
| 75 kg Adult  | 4500 ml             | 1500 ml<br>(7059 ml)    | 33%       |
| 3 kg Neonate | 255 ml              | 400 ml<br>(84.1 ml)     | 157%      |

# Motivation for circuit miniaturization

- $\sqrt{}$  Avoidance of donor blood
  - risk of infection
  - immunological problems
  - metabolic problems
  - Availability and cost
  - Parental preference
- $\sqrt{}$  Avoidance of hemodilution
  - capillary leak/edema
  - clotting mechanisms disturbed
- Reduction of synthetic surface area

Martin Elliott Perfusion: 1993;8:81-86

#### Motivation for circuit miniaturization

**T Gourlay**, Perfusion; 2001; 16:381-390, *Biomaterial development for Cardiopulmonary bypass*.

Blood-biomaterial interaction studies using a rodent recirculation model.

# Does reducing the expanse of exposed biomaterial reduce the inflammatory response?

Reducing surface area of PVC tubing produced less CD11b Integrin expression on neutrophils. **F De Somer** et al, Perfusion 1996; 11: 455-460, *"Low extracorporeal priming volumes for infants: a benefit?* 

80 infants (mean  $4.6 \pm 1.6$  kg) studied with small circuit Total prime volume = 205 ml Mean RBCs used in prime =  $93.5 \pm 60$  ml (25% asaunginious) Mean post-op RBCs used =  $202 \pm 67$  ml (3.7% no RBCs)

Mean FFP used in prime =  $2 \pm 19$  ml (85% no FFP) Mean post-op FFP used =  $62 \pm 72$  ml (37% no FFP at all)

#### No MUF used

# The Spectrum of Thought



#### **Optimal Conditions**

Blood use is inevitable. Circuitry should be reasonably small using available components and historical perfusion parameters & norms.





Smaller is better. Bloodless CPB in infants is possible, we should work toward this. Apply new concepts to attain miniaturization

## **Conventional approaches to miniaturization**

"Priming Volume" - defined



How can we reduce the priming volume?

Modify tubing dimensions

 Length
 Diameter

# Shorten line lengths

# √ Minimize the deadspace in the circuit

√ Reposition to optimize tubing lengths



# **Decrease tubing diameters**

| Tubing | Volume  |  |
|--------|---------|--|
| I.D.   | cc/foot |  |
| 1/8"   | 2.5     |  |
| 3/16"  | 5.0     |  |
| 1/4"   | 9.65    |  |
| 3/8"   | 21.7    |  |
| 1/2"   | 38.6    |  |

# **Tubing Diameter**



# **Tubing flow ranges**

 Arterial Line

 1/8"
 300 - 400
 cc/min

 3/16"
 400 - 1000
 cc/min

 1/4"
 1000 - 2200
 cc/min

Disclaimer: Values advocated by other centers. We are not necessarily recommending this

#### Venous Line

Most centers will use 1/4" venous line up to about 1500 ml/min.

Augmented venous drainage has changed that paradigm

How can we reduce the priming volume?

- Modify tubing dimensions
  - -Length
  - Diameter
- Component selection
  - -Oxygenator
  - -Arterial line filter
  - Cardioplegia system



• Oxygenator Unit

• Arterial Line Filter

Cardioplegia System

# **Components - Oxygenators Unit**

### **CONSIDERATIONS**

- Venous reservoir
- Design
- Versatility
- Biocompatability

|                      | Priming<br>Vol. (ml) | Q Rating<br>(ml/min) | Memb.<br>Area (m <sup>2</sup> ) |
|----------------------|----------------------|----------------------|---------------------------------|
| Cobe<br>Micro        | 52                   | 800                  | 0.33                            |
| Sorin<br>Lilliput I  | 60                   | 800                  | 0.34                            |
| Medtronic<br>MiniMax | 140                  | 1500                 | 0.6                             |
| Terumo<br>308        | 80                   | 800                  | 0.8                             |



## **Arterial Line Filters**

# Pall LPE 1440





Capiox AFO2

# How can we reduce the priming volume?

- Modify tubing dimensions
  - Length
  - Diameter
- Component selection
- Elimination(??)

arterial line filter hemoconcentrator/MUF circuit BCPS system

## **Elimination of Arterial Line Filter?**

The ALF can represent 10 - 20% of the entire Priming volume of a Pediatric CPB circuit

96% of pediatric centers use arterial line filtration

Groom R, 1995, Perfusion 10(6):393-401

# **Blood Cardioplegia Systems**

#### What are the options?





## **Next Generation**

... In the long-term the whole basic concepts of venous return and arterial pumping must be re-addressed.

> Martin Elliott Perfusion 1993: 8:81-86

# Re-design the pump console

#### What is the current "standard" CPB console?



# "Second generation pump oxygenator"

CARDIOPULMONARY BYPASS IN NEONATES, INFANTS and YOUNG CHILDREN

Jonas R and Elliott M

Chapter 16 Kirklin, Raible, Blackstone

Priming volume and other aspects of pump oxygenators for neonates and infants



## The Duke mini-circuit

Oxygenator and Pumps at patient Level.

Requires the use of Vacuum assisted Venous drainage.



#### The Duke mini-circuit

Oxygenator and Pumps at patient Level.

Requires the use of Vacuum assisted Venous drainage.



# Compared to standard console



# Mini circuit - small roller pumps





Mini-circuit cardiopulmonary bypass with vacuum assisted venous drainage: feasibility of an asanguineous prime in the neonate

- C Lau et al. *Perfusion* 1999; 14: 389-396
- 10 x 1-week old piglets
  - 5 conventional circuit
  - 5 "mini-circuit"
- Results

- Blood requirements less  $(47 \pm 5.8 \text{ ml vs. } 314 \pm 31.6)$ 

# **Clinical Applications**

Dr. Y Takahashi Sakakibara Heart Institute 100 infants (3.3 - 4.9 kg) VSD/PH Mean lowest Hct = 15% Post-op Day 2 = 28%

94% had no blood transfusions

No neurological complications Psychomotor development index scores near normal.



Technowood® System

# **Barrier sheet**



#### Technowood® System

## Safety issues in Miniaturization

Wilcox TW: JECT 34(1): 2002

Vacuum-Assisted Venous Drainage: To Air or Not to Air, That is the Question. Has the Bubble Burst?

How do pediatric perfusion circuits handle entrained venous air?

Air entrainment in venous line results in air emboli detection in the arterial line even under gravity conditions..

With VAVD, this effect to significantly more pronounced.

#### Limits of Miniaturization



#### Limits of Miniaturization



#### Limits of Miniaturization

|              | B.V.    | P. V.                | % diff. |
|--------------|---------|----------------------|---------|
| 75 kg Adult  | 4500 ml | 1500 ml<br>(7059 ml) | 33%     |
| 3 kg Neonate | 255 ml  | 400 ml<br>(84.1 ml)  | 157%    |
| 0.5 kg Rat   | 40 ml   | 10 ml                | 25%     |

## **Optimal CPB Conditions**

